
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Basker : A Threaded Sparse LU factorization
utilizing Hierarchical Parallelism and Data Layouts

Siva Rajamanickam

Joshua Booth, Heidi Thornquist

Sixth International Workshop on Accelerators and Hybrid Exascale
Systems (IPDPS 2016)

▪ MPI+X based subdomain solvers

▪ Decouple the notion of one MPI rank as one subdomain: Subdomains can span
multiple MPI ranks each with its own subdomain solver using X or MPI+X

▪ Subpackages of ShyLU: Multiple Kokkos-based options for on-node parallelism

▪ Basker : LU or ILU (t) factorization

▪ Tacho: Incomplete Cholesky - IC (k) (See K.Kim talk in HIPS workshop later today)

▪ Fast-ILU: Fast-ILU factorization for GPUs

▪ KokkosKernels: Coloring based Gauss-Seidel (see talk by M. Deveci Thursday),
Triangular Solves

▪ Under active development. Jointly funded by ASC, ATDM, FASTMath, LDRD.

ShyLU and Subdomain Solvers : Overview

TachoBasker FAST-ILUKLU2

Amesos2 Ifpack2

ShyLU

KokkosKernels –

SGS, Tri-Solve (HTS)

▪ Specialized memory layouts

▪ Architecture aware data layouts

▪ Coalesced memory access

▪ Padding

▪ Array of Structures vs Structure of Arrays

▪ Kokkos based abstractions (H. C. Edwards et al.)

▪ Two dimensional layouts for matrices

▪ Allows using 2D algorithms for solvers and kernels

▪ Bonus: Fewer synchronizations with 2D algorithms

▪ Cons : Much more harder to design correctly

▪ Better utilization of hierarchical memory like High Bandwidth Memory

(HBM) in Intel Xeon Phi or NVRAM

▪ Hybrid layouts

▪ Better for very heterogeneous problems

Themes for Architecture Aware Solvers and
Kernels : Data layouts

▪ Synchronizations are expensive

▪ 1D algorithms for factorizations and solvers, such as ND based solvers

have a huge synchronization bottleneck for the final separator

▪ Impossible to do efficiently in certain architectures designed for massive

data parallelism (GPUs)

▪ This is true only for global synchronizations, fork/join style model.

▪ Fine grained synchronizations

▪ Between handful of threads (teams of threads)

▪ Point to Point Synchronizations instead of global synchronizations

▪ Park et al (ISC14) showed this for triangular solve

▪ Thread parallel reductions wherever possible

▪ Atomics are cheap

– Only when used judiciously

Themes for Architecture Aware Solvers and
Kernels : Fine-grained Synchronization

▪ Statically Scheduled Tasks

▪ Determine the static scheduling of tasks based on a task graph

▪ Eliminate unnecessary synchronizations

▪ Tasks scheduled in the same thread do not need to synchronize

▪ Find transitive relationships to reduce synchronization even further

– Jongsoo Park et al

▪ Dynamically scheduled tasks

▪ Use a tasking model that allows fine grained synchronizations

▪ Requires support for futures

▪ Not the fork-join model where the parent forks a set of tasks and

blocks till they finish

▪ Kokkos Tasking API

– Joint work with Carter Edwards, Stephen Olivier, Kyungjoo Kim,

Jon Berry, George Stelle

▪ See K. Kim’s talk in HIPS for a comparison with this style of codes

Themes for Architecture Aware Solvers and
Kernels : Task Parallelism

▪ System Level Algorithms

▪ Communication Avoiding Methods (s-step methods)

▪ Not truly asynchronous but can be done asynchronously as well.

▪ Multiple authors from early 1980s

▪ Pipelined Krylov Methods

▪ Recently Ghysels, W. Vanroose et al. and others

▪ Node Level Algorithms

▪ Finegrained Asynchronous iterative ILU factorizations

▪ An iterative algorithm to compute ILU factorization (Chow et al)

▪ Asynchronous in the updates

▪ Finegrained Asynchronous iterative Triangular solves

▪ Jacobi iterations for the triangular solve.

Themes for Architecture Aware Solvers and
Kernels : Asynchronous Algorithms

▪ Provides tradeoff between fidelity and speed/problem size

• Xyce enables full system parallel simulation for large integrated circuits

▪ Essential simulation approach used to verify electrical designs

• SPICE is the defacto industry standard (PSpice, HSPICE, etc.)

• Xyce supports NW-specific device development

Why Transistor-Level Circuit Simulation?

Simulation Challenges

▪ Network Connectivity

• Hierarchical structure rather than spatial topology

• Densely connected nodes: O(n)

▪ Badly Scaled DAEs

• Compact models designed by engineers, not numerical
analysts!

• Steady-state (DCOP) matrices are often ill-conditioned

▪ Non-Symmetric Matrices

▪ Load Balancing vs. Matrix Partitioning

• Balancing cost of loading Jacobian values unrelated to
matrix partitioning for solves

▪ Strong scaling and robustness is the key challenge!

Analog simulation models network(s) of devices coupled via

Kirchoff’s current and voltage laws

▪ Basker: Sparse (I)LU factorization

▪ Block Triangular form (BTF) based LU
factorization, Nested-Dissection on large BTF
components

▪ 2D layout of coarse and fine grained blocks

▪ Previous work: X. Li et al, Rothberg & Gupta

▪ Data-Parallel, Kokkos based implementation

▪ Fine-grained parallel algorithm with P2P
synchronizations

▪ Parallel version of Gilbert-Peirels’ algorithm (or
KLU)

▪ Left-looking 2D algorithm requires careful
synchronization between the threads

▪ All reduce operations between threads to
avoid atomic updates

ShyLU/Basker : LU factorization

ShyLU/Basker : Steps in a Left looking factoization
Workflow of a Parallel Gilbert-Peierls Implementation

Bottom level of Dependency
tree

Walking from level 0, slvel is
separator level

Fine grain reduction needed
for level 1

Level 1 factorization
Fine grain reduction needed
for level 2

Level 2

▪ Different Colors show different threads

▪ Grey means not active at any particular step

▪ Every left looking factorization for the final separator shown here involves four
independent triangular solve, a mat-vec and updates (P2P communication), two
independent triangular solves, a mat-vec and updates, and triangular solve.
(Walking up the nested-dissection tree)

▪ A set of problems selected from UF Sparse Matrix Collection and Sandia’s
internal problem set

▪ Representative problems with both high fill (fill-in density > 4.0) and low
fill-in density

▪ OpenMP and Kokkos based implementation for CPU and Xeon Phi based
architectures

▪ Testbed Cluster at Sandia

▪ SandyBridge based two eight core Xeons (E5-2670), 24GB of DRAM

▪ Intel Xeon Phi (KNC) co-processors with 61 cores with 16 GB main
memory

▪ The number of non-zeros between the solvers are different due to the
different ordering schemes used by the solvers

▪ Comparisons with KLU, SuperLU-MT and MKL-PARDISO

ShyLU/Basker : Performance Results

▪ Speedup 5.9x (CPU) and 7.4x (Xeon Phi) over KLU (Geom-Mean) and up to 53x (CPU) and
13x (Xeon Phi) over MKL

▪ Low-fill matrices Basker is consistently the better solver. High fill matrices MKL Pardiso is
consistently the better solver

ShyLU/Basker : Performance Results

Power0 rajat21 asic_680ks hvdc2 Freescale1 Xyce3

0

3

6

9

1
2
3
4
5

0

2

4

6

8

2.5

5.0

7.5

1

2

3

4

2

4

6

8

12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16

SandyBridge Cores

S
pe

ed
up

 v
s.

 K
LU

Solver Basker PMKL

Power0 rajat21 asic_680ks hvdc2 Freescale1 Xyce3

0

3

6

9

1

2

3

4

0.0

2.5

5.0

7.5

2.5

5.0

7.5

5

10

15

0

20

40

60

1248 16 32 1248 16 32 1248 16 32 1248 16 32 1248 16 32 1248 16 32

Phi Cores

S
pe

ed
up

 v
s.

 K
LU

▪ Performance Profile for a matrix set with a high-fill and low-fill matrices shown (16
threads on CPUs /32 threads on Xeon Phi)

▪ Low-fill matrices Basker is consistently the better solver. High fill matrices MKL
Pardiso is consistently the better solver

ShyLU/Basker : Performance Results

▪ Themes around Thread Scalable Subdomain solvers

▪ Data Layouts

▪ Fine-grained Synchronizations

▪ Task Parallelism

▪ Asynchronous Algorithms

▪ Basker LU factorization

▪ Uses 2D layouts with hierarchy from block triangular form and nested

dissection

▪ Uses fine-grained synchronizations between teams of threads

▪ Uses a static tasking mechanism with data-parallelism

Conclusions

Questions ?

